- supervised and unsupervised neural networks
- Макаров: (back-propagation)(self-organized) контролируемые (с обратным распространением) и неконтролируемые (самоорганизующиеся) нейронные сети
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
neural network — 1. any group of neurons that conduct impulses in a coordinated manner, as the assemblages of brain cells that record a visual stimulus. 2. Also called neural net. a computer model designed to simulate the behavior of biological neural networks,… … Universalium
Unsupervised learning — In machine learning, unsupervised learning is a class of problems in which one seeks to determine how the data are organised. It is distinguished from supervised learning (and reinforcement learning) in that there are only inputs, and no… … Wikipedia
Artificial neural network — An artificial neural network (ANN), usually called neural network (NN), is a mathematical model or computational model that is inspired by the structure and/or functional aspects of biological neural networks. A neural network consists of an… … Wikipedia
Data Analysis Techniques for Fraud Detection — Fraud is a million dollar business and it is increasing every year. The PwC global economic crime survey of 2009 suggests that close to 30% of companies worldwide reported fallen victim to fraud in the past year[1] Fraud involves one or more… … Wikipedia
Artificial intelligence — AI redirects here. For other uses, see Ai. For other uses, see Artificial intelligence (disambiguation). TOPIO, a humanoid robot, played table tennis at Tokyo International Robot Exhibition (IREX) 2009.[1] Artificial intelligence ( … Wikipedia
Machine learning — is a subfield of artificial intelligence that is concerned with the design and development of algorithms and techniques that allow computers to learn . In general, there are two types of learning: inductive, and deductive. Inductive machine… … Wikipedia
Predictive analytics — encompasses a variety of techniques from statistics and data mining that analyze current and historical data to make predictions about future events. Such predictions rarely take the form of absolute statements, and are more likely to be… … Wikipedia
Adaptive resonance theory — (ART) is a neural network architecture developed by Stephen Grossberg and Gail Carpenter. Learning model The basic ART system is an unsupervised learning model. It typically consists of a comparison field and a recognition field composed of… … Wikipedia
Support vector machine — Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Viewing input data as two sets of vectors in an n dimensional space, an SVM will construct a separating hyperplane in that… … Wikipedia
Growing self-organizing map — A growing self organizing map (GSOM) is a growing variant of the popular self organizing map (SOM). The GSOM was developed to address the issue of identifying a suitable map size in the SOM. It starts with a minimal number of nodes (usually 4)… … Wikipedia
Apprentissage Automatique — L apprentissage automatique (machine learning en anglais) est un des champs d étude de l intelligence artificielle. L apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une… … Wikipédia en Français